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ABSTRACT

Newtonian gravity has successfully explained various observed astrophysical
phenomenona. It is known that, in the weak field, non-relativistic limit, the
General theory of Relativity reduces to Newtonian gravity. A new theory
of gravity was recently proposed by Banados and Ferreira. This theory is
equivalent to General Relativity in vacuum, but it differs from it in the
presence of matter. Under weak field approximation, the new theory reduces
to a modified Newtonian gravity where an extra term %VQp appears on the
R .H. S in addition to the usual 47Gp. k is a new constant which controls
the effects of the new term, p is the mass density.

In the first part of this report, we elaborate on our study of the collapse of
spherically symmetric dust in the modified theory of gravity. We have found
that, for a negative x, results there is an impact on the collapse of dust. For
positive k > 0 we find that the collapse does not lead to singularities.

In the second part of this report, using the modified Poisson’s equation,
we have worked on finding the mass density distribution of a galaxy from
known rotation curves. After finding our solution, we have seen that, a
favourable solution exists only for x > 0. There is a limiting value of xk below
which, the solution approaches the Newtonian one. Comparing our results
with observations, we are able to constrain the possible range of x to be
0 <k <0.2234 G kpc?.



Chapter 1

The Modified Newtonian
Theory

1.1 Introduction
Poisson’s equation for Newtonian gravity is given as,
V20 = 47nGp (1.1)

Where @ is the gravitational potential, G is the universal gravitational con-
stant and p is the matter density. Newton’s law of gravitation was successful
in explaining the motion of the moon, planets, orbit of Uranus, existence of
Neptune, precession of perihelion of orbits of planets. But in the 20" century
it faced some serious difficulties after publication of Einstein’s special theory
of relativity(1905). Few of them are

e Instantaneous gravitational interaction between two bodies .

e Mass energy equivalence £ = mc? leads to coupling between matter
and gravitational energy.

In general theory of relativity, Einstein described gravity as the curvature of
spacetime and introduced the concept of geodesics as free-fall trajectories in
a curved four dimensional space-time continuum. Einstein’s field equation
(including the effect of cosmological constant A and assuming 87G = 1 = ¢),
takes the following form



where, G;; = R;j — %gin , Gj is the well-known Einstein tensor, T;; is the
energy momentum tensor and R;;, It are the Ricci tensor and Ricci scalar. In
the weak-field, non-relativistic, time-independent case, Einstein’s field equa-
tion reduces to Poisson’s equation (1.1).

An alternative formulation of the gravitational action was proposed by Ed-
dington in 1924. He suggested that in de Sitter space, the action can be
defined as,

S = SEddington = 2k / d*z+/|R] (1.3)

where k is a constant with inverse dimension to that of A. Eddington’s for-
mulation of gravity is incomplete since it does not include coupling between
matter and gravity. Recently, Banados and Ferreira have proposed a way
to couple matter thereby leading to a theory different from Einstein’s Gen-
eral relativity in presence of matter. The Banados—Ferreira proposal is of a
Born—Infeld type of action, written as

2 /
SBorn—Infeld = E/d4x |: |gl] + ﬁRij| —A V |g|:| + SMatteT (14>

The beauty of this action is that, it satisfies Spinstein—mimert €quation(1.2) for
small kR with A = % . On the other hand for large kR the action reduces
to Skddington. In the weak-field, non-relativistic limit, we find a modified
Newtonian gravity governed by

1
Vo= Sp+ %v% (1.5)

In S.I. unit p
V20 = 47Gp + ZV% (1.6)

This equation is known as the Modified Poisson’s equation. Here ® is grav-
itational potential, p = matter density, x is a new parameter characterising
the modified theory of gravity.

1.2 Novelties of the Modified Newtonian Grav-
ity

The new term in the modified Poisson’s equation (1.6) is the main reason

behind some novel effects. Some of them are given below.
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Considering spherical symmetry, the hydrostatic equilibrium equation for
pressure is given by.

dp _ Gm(r)p &

— 2P = —Gegs(r)

__Gmlr)p m(r)p
dr 72 4

r2

(1.7)

i.e. rate of change of pressure with respect to radial distance within matter
either increases or decreases depending upon the sign of x . Here G.ss(r) =

G+ ’f;j(‘; /) is effective gravitational constant. Depending upon sign of x mag-
nitude of effective gravitational force increases or decreases for main sequence
stars in hydrostatic equilibrium. This effects the central density, core temper-
ature and evolution of stars. Thus, the modified Poisson’s equation changes
the standard Newtonian gravity results. For example, in Newtonian gravity,
whether stars end their life by collapse or not is determined by the Chan-
drasekhar limit. In modified Newtonian gravity the Chandrasekhar limit is
also different. The observed rotation curve of spiral galaxies cannot be ex-
plained in Newtonian theory. One can try to see if the modified theory can

explain the flattening of the rotation curves observed in spiral galaxies.

1.3 Overview of work done

Our first interest is to study gravitational collapse of spherically symmetric
pressure less matter (dust) in Newtonian and modified Newtonian gravity.
Thereafter, addressing the problem of flattening of rotation curves of spiral
galaxies, we have tried to find out solutions of the modified Poisson equation
with spatially varying density without using dark matter. We also tried to
use these solutions to constrain the value of k.




Chapter 2

Gravitational collapse

2.1 Gravitational collapse in Newtonian grav-
ity
2.1.1 Theory

Consider a spherically symmetric mass of incoherent, pressure-less matter
(dust) influenced by its gravitational force. Let, at time ¢t = 0, the radius
of the dust cloud be ‘a’. We assume that the dust remains spherically sym-
metric for all ¢ > 0 and the only force is gravitational. In order to study
the dynamics of such pressure-less matter, we consider spherical polar coor-
dinates (r,0,¢) with origin at the center of the dust. The basic equations
governing the motion of the dust cloud are

op =,

E + V(pu) = 0 (2.1)
di — GM(r,t),

% = 2 T (22)

where p = p(r,t) is the matter density , @ = wu(r,t)r is radial velocity |,
M(r,t) = 4x [ p(r,t)rdr is the mass of dust inside the sphere of radius .

2.1.2 Solution

In order to solve equation (2.1) & (2.2) simultaneously, we assumed that
p(r,t) = p(t).



So at t = 0, total mass of the dust is
4 3
M = M(a,0) = 37TPoa (2.3)

where pg = p(0) = constant . Now from equation (2.1) we get

Op(t) 1 9(rp(tyu(r, 1))

ot r2 or =0
1 0(r*u(r,t))  d(lnp)
r2 or T at
A(r?u(r,t)) B 5 dR(t)
or - 7 dt

where R(t) = Logep(t) = Inp(t) . Integrating the above equation we get

1 dR()

1
u(rt) = =52 ()

To avoid diverging solution at » = 0 , we put g(t) = 0 for all t. Thus we get
u(r,t) = —=r— (2.4)

From equation(2.2)

ou(r,t) ou(r,t)  GM(r,t) 4
5 +u 5~ 2 ——BWGp(t)r (2.5)

Combining equation(2.4) & (2.5) we get

@R 1 (dR\’
_ 22 — 4nGel 2.
az 3 (dt) mie (26)
Substituting % = y in equation (2.6) we get

dy 1 _
R 3V drGelty™ (2.7)

Let z = y? , then equation (2.7) takes the following form



Solving and putting initial condition R(t = 0) = Inpg i.e. (%) [—0 =0

2 = 24nG (eR - e%(ROJ“QR))

which gives

(%) = \/247rG <€R — e%(ROHR))

Now, to know densityp(t) for t > 0 , we have to integrate the above equation.

Thus we get,
dp

1 P
+—
V24 G/ 4 1
T pi s = pg

Here p = p(t) denotes the density of dust at time ¢ > 0. To solve equation
(2.9) we put p = pycos % | and solving we get

2
9 3
p= o (m) (2.10)

(2.9)

ol

3 .
t= m[iﬁ‘f“&ﬂiﬁ] (211)

Dependence of p on time can be obtained by a parametric plot of equation
(2.10) & (2.11) (see figure 2.1).

2.1.3 Result

Thus we have seen that density p is increasing with time. After a certain finite
time it goes to very high value. The time at which density became almost
infinity (i.e.volume — 0) is called the collapse time Ty¢, the subscript ‘NC’
denotes Newtonian collapse time. The collapse time T can be obtained by
taking p — oo i.e. by putting ¢» = 7 in equation (2.10). Thus

T — 37 o a3
N o /2anGpy 2V 2MG

Therefore, spherically symmetric mass of incoherent pressure less matter
(dust), finally collapses in finite time under the influence of its own grav-
itational field.

(2.12)
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Figure 2.1: Variation of density p with time ¢. Here magnitude of G' and py is taken as
one.

2.2 Gravitational collapse in modified New-
tonian gravity

2.2.1 Theory

In this section we study the collapse of incoherent matter (dust) under modi-
fied Poisson’s equation (1.9). Following previous discussions, the basic equa-
tion of motion of matter is given below as

odp = .
8 L5 (i) — 2.1
5 + V.(pu) =0 (2.13)
du  GM(r,t) KOp
a2 4or (2.14)

The equation (2.14) is slightly different from the equation (2.2) due to the
introduction of the ‘«’ term. For constant density, the coupling term is
insignificant. For that reason, we assume that near the centre, the density
profile p(r,t) and radial velocity u(r,t) follows a series expansion as given

12



below.

p(rit) = palt)r” (2.15)
u(r,t) =Y u,(t)r" (2.16)

These series expansions simplify our calculation in solving the equation (2.13)
& (2.14) simultaneously. Taking partial derivatives of p(r,t) with respect to
r & t respectively we get

8p€()7;, t) _ ;npn@)rnl (2.17)
op(r,t dpn(t)
pét ) _ Z Pdt( )r (2.18)

Similarly for u(r,t), taking partial derivatives with respect to r & t respec-
tively, we get

ou(r,t) B _

5 = ng_o nuy, (t)r (2.19)
ou(r,t) B dun(t)

Era 2 iy r (2.20)

Now putting these in equations (2.13) & (2.14) we get following equations:
Equation for p :
Ap(r,t) 1 .9(r’pu)
ot r?2  Or
dp(r,t) 2
A0 2 gttty = 0

dp(r,t) ou(r,t)

) (1)

" " (220
Equation for u :
ou(r,t) +u8u(r, t) _  GM(r,t) kIp(rt)
ot or B r2 4  Or
G [T 5 K Op(r,t)
=~ i p(r,t)dmrodr — 1 o

13



() ()2

Equating n!" order coefficients of r we get

pn )2 dr— Zm’ Lo (t)
(2.22)

EQUATION FOR p

EQUATION FOR u

ORDER

0% %0 + 3 (pruo + pour) =0 duo +upuy = —3p1

15t % +4 (p2u0 + prug + pOUQ) =0 dul + Ul + 2ugug = %WGPO -
n2p2

d

2n L2+ 5 (psuo + paur + pruz + pouz) = 0 G+ 3(wutugus) =
_%WGpl - §3P3

37 ddif + 6 (pauo + p3uy + paug + prug + pous) =0 | Lo + 2ud + 4 (uguo + uyug) =
—77er2 14p4

4th %4 + 7 (psuo + paur + p3uz + paus + prug + pous) = 0 d;‘; + 5 (usuo + uaur +uzuz) =

—57Gps — §5ps

Table 2.1: n'" order equation for density p and velocity u upto n = 4
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2.2.2 Solution

For finding the solution, we have to solve the equations listed in the table
(2.1) simultaneously, up to a certain order. Now the question is up to what
order we should consider. We can truncate the series on the basis of the
initial condition.

From table (2.1) we can rewrite the equation for u combining 0, 15 & 2" as

ug x (01" order equation of u)+u; x (1% order equation of u)- ugx (2"¢ order equation of u)
=

ug X (%0 +uou1> +up X (dd% +u% +2u0u2) —ug X <% + 3 (ugu1 +u0U3))
=u2 X (—%p1) +u1 X (_%WGPO — 22py) —ug x (—47Gp1 — £3p3)
This gives

dui 2 3u(2)u3 1 dug dus 4p0 upp1 K (3p3uo pP1U2
el QY (=2 —up =2 ) = —nG [ 22— d — 2py — 2.23
dt T ul * ul 2 dt uo dt T 3 ul + 4 ul P2 ul ( )

Now we see that, for finding solution for u;, we need to include the equations

for ug, us. When we put the equations for wug, ug, then the solution of p is
also required. Therefore, to solve the equation it is required to know the
solution of other variables, and in this way we could never reach the actual
goal. Therefore we have to consider an approximation. We found that, if we
put ug = 0 = us & p; = 0 = p3 then the equation is truncated at the first
order.

Series up to 1* order : As we already discussed, this can be done by
imposing condition ug = us = 0 = p;. Then from the 0** order equation of u

we get,
L dpo
- - 2.24
RV (2:24)
From Table 2.1 combining 1% & 2"? order equation of p by putting uy = uy =

0 = p; we get

Ldpy 5 dpo __ potis (2.25)
P2 dt 3p0 dt P2 )
Considering pous < p2, we get a relation between p, and pg
5
p2 = Npg (2.26)

15



Where 7 is a constant independent of py and pg and n < 0 . With the same
condition, and substituting equation (2.24) in 1% order equation for u we get

fo 4P\’ 3
P2 () —anGpo+ 2 2.27
P <p0) mlapo T+ S Rp2 (2.27)
Now let R(t) = Inpy(t) then the above equation takes following form
d*R 1 (dR 3 s
F — g (E) = 47TG€ + 2HT]€3 (228)

Thus, if we put k = 0 then equation (2.28) reduces to equation (2.6). Now
substituting % = y in equation(2.28) and then putting z = y* we get re-

spectively
dr 37~ ( > )Y

d 2
ﬁz 34 = 8mGel + 3rneit (2.29)
Solving and putting initial condition (d—f) lico = 0 and R(t = 0) = R;, we

get

z = 247Qd (6 i(R +2R) ) + 3/<;’r] <63R — e(Ri"'%R))

This gives

(C;—f) = \/247TG (eR — e%(Ri“R)) + 3k (e%R — e(Ri%R))

Now to know the density p(t) for t > 0, we have to integrate above equation.
Thus we get

t(po) — t(pi) =

dp

(2.30)

v i ;
TG o j?f\/m pE+ 2 (p— pi)

Here p; shows initial density and py is final central density. Our study is
focused mainly on pg, because it gives the knowledge of the central density
ie. = 0. If we put k = 0 in equation (2.30), then it reduces to equation
(2.9), i.e. matter dust has collapsed. However for non-zero value of coupling
constant k # 0, it is not easy to solve equation (2.30) analytically. Therefore,
we used numerical methods to analyse the results of the equation (2.28). The
codes for solving equation (2.28) is given in Appendix A.

16



1.1 : ; . T . T . | . T

Plot of Collapse time (T_./T, )Vs Kn ~ ~~ Numericallycomputed?
c’ 'Ne
Fitted curve -1

Kn

Figure 2.2: Plot of collapse time (T.) as a function of (kn). T. is scaled in Newtonian

Tc

collapse time Tnc. Red line shows fitted curve. Fitted equation is =<~ = 1.0225 —
0.1838Log.(kn + 1.0434)

Tnc

2.2.3 Result

1.
2.

For k = 0 variation of central density with time is shown in figure (2.1).

For kn > 0(i.e. kK < 0) numerical solution gives that p is an increasing
function of time and it takes on a very high value after a some time.
Thus xn > 0 corresponds to collapse of dust.

The time of collapse is reduced with increasing value of k7. The figure
(2.2) visualizes our statement.

For kn < O(i.e. k > 0) matter field behaves in an oscillatory manner.
Figure (2.3) shows that, pg, po & wu; are periodic function of time.

Time period of oscillation changes with xn ( see figure 2.4 ).

. Amplitude of pg & ps also depends on kn (see figure 2.5 & 2.6).

Figure (2.7) shows density as a function of radial distance over a time
period. Black dark line shows the density profile at £ = 0. We observed
that, for —8 < k1 < 0 amplitude of oscillation is above the initial value
and for kn < —8 amplitude of oscillation is below the initial value.

17



r Plotof p;,p,, U, Vs Time (t/T )for Kn=-5 —»; 1

Figure 2.3: Plot of central density pg,p2 and velocity u as a function of time ¢ for kn = —5

LS o s S s B B B B B B B BN B B
r Plot of Time periode (T /T~ ) Vs —Kn * Numerically |
Fitted curve 4

T/T

g SIS E R NP P P S S SIS S S S T S S —m|

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
—Kn

Figure 2.4: Plot of time period of oscillation T' as a function of kn for xkn < 0 . Red
line shows fitted curve. Fitted equation is —— = 2.25060 + 0.10307|x7| + 0.00581|xn|? +

} Tnc —
0.00084|xn|® + 0.00001]|xn|*
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T T
. Numlerically com;:;uted
fitted curve

Plotof p Vs-Kn

o

Figure 2.5: Plot of py as a function of xn for kn < 0. Red line shows fitted curve .
Fitted equation is py = e4689—1:2461]5n|+0.0584|n|”

20 ————————————F———1——

Numerically

Plot of P, Vs-Kn —— Fitted curve |

oL i

-20 i
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.40 _

-60 | i
.80 1 1 1 1 1 | 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16

-Kn

Figure 2.6: Plot of ps as a function of xn for k1 < 0.Fitted equation is py = —659.45 +
336.99|kn| — 67.94|kn|? + 6.73|kn|?
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Figure 2.7: Variation of central density (left side) and corresponding velocity (right side)
with distance from centre over a period for three different values of kn(< 0).
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2.2.4 Higher order correction

As we already discussed that, one could terminate the series upto 1% order by
putting uy = us = 0 = p;. To check, whether the result of solution is valid or
not, we have to consider higher order equations. To get solution that involve

higher order terms, we have used ‘Mathematica’ NDSolve programming tool.
Equations used for finding solution upto 1% order:

dpo

— 4+ 3 = 0

FTaRd (pou1)

dp2

— +5 = 0

pTals (p2u1)
duy 9 4 k
& = —ZaGpy— -2
a1 3P0 T epe

Equations used for finding solution upto 2"¢ order: We can extend

series upto 2"? order by setting p; = u; = 0 for i > 2.
d
0 4 3 (pruo + pour) = 0
dt
d
% + 4 (p2uo + prur + pou2) = 0
d
% +5(p2ur + pruz) = 0
dug n k
— tupur = ——
o Tuow e
duy 2 4 K
o1 2 = —ZxGpo— 22
at + uy + 2upu2 37r £0 1 P2
dus 4
e - ‘g
prals (u2u1 + uou3) L"Gn

Equations used for finding solution upto 3¢ order: We can extend
series upto 3" order by setting p; = u; = 0 for i > 3.

d
%4—3(/11%-&-/)01“) = 0
dp1 dP2
5 + 4 (p2uo + p1ur + pouz) =0§ + 5 (p3uo + pau1 + pruz + pous) = 0
d,
% + 6 (p3u1 + pauz +pruz) = 0
dug n K
— +uguy = ——
PR 0u1 g
duq 2 4 K
—_— 2 = ——7nGpg— —2
a + uy + 2uou2 371’ PO 1 P2
d 4
% + 3 (ugu1 + uouz) = —ZﬂGpl — g3p3
dus

+2u2 + 4 (uguo + urus)

4
dus _irG
dt 570 P2

21



Equations used for finding solution upto 4'* order: We can extend
series up to 4" order by setting p; = u; = 0 for i > 4.

d
i) + 3 (p1uo + pou1)

= 0
dt
d, d
% + 4 (p2uo + prur + pouz) = 0% +5(pauo + pau1 + pruz +pouz) = 0
dps
o + 6 (pauo + p3u1 + pauz + pruz + pous) = 0
d,
% + 7(pau1 + pauz + pouz + prug) = 0
dug n K
— tuwur = ——
7t ou1 e
duy 2 4 K
2 = ——7aGpyg— -2
at + uy + 2upu2 37r 140) 1 P2
dus 4 K
=243 = —nGp -3
% + 3 (ugu1 + uous) LGP — 1 3ps
dus +2u2 4 4( n ) 4 a 5y
— u u4u + U us = —-7 - =
7t 2 4UQ 1U3 5GPz — L dpa
dugy 4
M4 = —-ZrG
o + 5 (uqu1 + uzuz) GTGPs

Plot of surface density at different instants of time gives the information
about the variation of density profile. Now, from figure (2.8), we see that if we
include higher order terms in order to study collapse under modified theory,
then nature of the curve remains same, whereas amplitude and time period of
oscillation slightly changes. Figure (2.9) shows the variation of density(p;’s)
and velocity(u;’s) as a function of time for series up to 4" order. Therefore,
higher order corrections also shows that for £ > 0(i.e.kn < 0) matter density
periodically changes with time.
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Figure 2.8: Plot of density profile near the centre for different instants of time
t(kn = —5). Here t is scaled in Ty¢. Figure(A) shows the density profile based on our ap-
proximation (i.e. except pg,p2,u1 all other terms zero for all values of ¢ ).Figure(B),(C),(D)
shows density profile for 274 37 4*" order approximation respectively. Initial conditions
are so chosen that introduction of higher order p’s do not affect on the density profile
at t = 0. Since we assumed that the dust particles are initially at rest, for all cases
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2.3 Numerical stability

The solutions for finding collapse time (7.), time period of oscillation (7'),
amplitudes of oscillation etc. are based on Runge-Kutta 4" order method
for solving 2" order differential equation. Therefore, it is necessary to verify
the stability of finding solution for various values of k7. In order to do that
we plot a contour Y (t) Vs R(t) using following equation,

dR

— =Y 2.31

o (2.31)
dY 1 3 5
— = Y2 4 4xGel + Zgnestt 2.32
3 + 47Ge +2m)e3 (2.32)

For periodically varying function, contour should be closed. But here we see
that after one period, starting point is slightly shifted. There may be two
reasons

1. The periodically varying function is not truly periodic.
2. There may be numerical error in each steps of iteration.

It was observed that if we decrease the step size, then the later reduces. So
that for better result, we must use as smaller a step size as possible.

We also found that, for smaller value of |kn| numerical calculation is too
unstable. This is due to fact that as |kn| reduces i.e. goes towards zero, the
equation make a transition from modified theory to Newtonian theory.

We also tried to connect the contours for different x7 , because that could give
us approximate form of analytic expression for density profile as a function of
time. But we did not get any simple relation that connects various contours.
Figure (2.9) & (2.10) illustrates our analysis.
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2.4 Conclusion

Finally we are reached at end of our discussion. The concluding remarks
are:

1. Newtonian theory of gravity shows that spherically symmetric mass
of incoherent pressure less dust always collapses under influence of
gravitational field.

2. The modified theory of gravity shows that

e For k < 0 (i.e. for kn > 0) matter collapses under influence of its
gravitational field. However as k becomes more and more negative
collapse time reduces. Thus for a negative coupling constant (i.e.
k < 0) results shows a dramatic impact on the collapse of dust.

e For k > 0 (i.e. for kK < 0) matter field behaves in an oscillatory
way, with time. Time period of oscillation depends on k7. Higher
value of k, increases time period. Amplitude of oscillation also
depends on kn and it increases as x reduces.

Thus modified gravity yields a singularity free solution for x > 0.
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Chapter 3

Mass distribution of a galaxy

3.1 Introduction

The mass distribution of a galaxy is mainly determined by dynamical method
and photometric method. In photometric method, mass distribution is mea-
sured by luminosity analysis from various points of a galaxy. The dynamical
method is based on data analysis, such as measurement of rotation velocities,
velocity dispersions etc.. In this chapter, we mainly focus on the rotational
velocity, to find density distribution of a galaxy.

3.2 Rotational velocity

Observations for finding the rotational velocity of a galaxy is itself a very
tough job. The only observable quantity for a star are the spectral lines of
light coming from it. The stars are orbiting around the center of the galaxy
and therefore some stars are moving away from us and some are moving
towards us. As a result of this, light reaching us shows Doppler shifts. If Av
denotes the Doppler shift , then we can measure the approaching or receding
speed of a star with respect to us by using the following relation.

A
Via = 2027 (3.1)
Yo

Here C' is the velocity light in vacuum and 14 is the mean frequency of light
coming from the stars. But, V.4 is not same as the rotational speed of the
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Figure 3.1: Distance of the Sun from the center of our galaxy is denoted by R, and
its rotational velocity about the center of the galaxy is Vsu,. [Left] Rotation curve inside
the solar circle (r < Rgyy) is obtained by measuring the terminal radial velocity Viqd—maz
at the tangent point, where the distance is given by r = Ry, sin(l). [Right] Rotation
velocity at any point in the galactic plane outside of the solar circle.

star, because V,,4 also depends on the galactic longitude(l). To understand
it more clearly, let us see the figures(3.1). From figure(3.1 [Right]) we get

‘/nzd = V(T) SIH<5> — ‘/sun sm(l)
= V(T)R‘;un sin(l) — Viyn sin(l)

r ‘/rad
4 = 55 ‘/sun
(r) Roun (sin(l) + >
When ‘/rad = ‘/radfmaa: 5 then R:un = Sll’l(l) So that,
V(T> = V;“ad—mam + V:eun Sln(l) (32)

This expression is valid only when observer located within the galaxy. For
most of the cases, observer is located outside the galaxy. So, for this if we
want to find the rotational velocity from doppler shift, then we have to use
following procedure (see figure 3.2 [left] ).

Let i be the angle of inclination of the galaxy i.e. if ¢ = 0, then the galaxy
is in face-on position and if ¢ = 90, then it is in the edge-on position. Let n
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Figure 3.2: [Left] Geometrical approach for finding V' (r) for external galaxies .[Right]
Blue shift and red shift when stars are approaching and proceeding from us.

be normal to the plane of the galaxy. Then from figure(3.2 [left] ), we get
n = {0, —sin(7), cos(i)}.

From this figure, we also have V(r) = {=V (r)sin(a), V(r) cos(a),0}. Thus
the radial component of the velocity being observed is,

Viaa = =V (r) sin(i) cos(a)

Thus, the rotational speed of a external galaxy can be obtained using follow-

ing relation

V;“ad
Vi(r)= sin(i) cos(a) (3.3)

3.3 The observed rotation curve

The plot of rotational velocity as a function of the distance from the center of
a galaxy is called the galaxy rotation curve or simply rotation curve. Figure
(3.3) shows the rotation curves in nearby spiral galaxies, which have been
obtained mainly by the terminal-velocity methods from optical, CO and HI
line data. Thus closer to center, rotational velocity rapidly increases with
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Figure 3.3: Plot of rotational velocity of various galaxies as a function of distance from
the center in ‘kiloparsec’

increase of the distance from center. But after a certain distance, it becomes
almost constant. This is called flattening of rotation curves. In this chapter,
first we have derived a general solution to find density distribution from the
rotational velocity and after that considering a guess velocity curve, we have
tried to explain the mass density distribution of a galaxy.

3.4 Density distribution using Newtonian grav-
ity
3.4.1 Theory

Motion of the stars and gas in a galaxy are approximately circular. Let us
define the circular velocity at radius r in the galaxy as v(r). Acceleration
of the star moving in a circular orbit must be provided by a net inward
gravitational force. Therefore we have,

P = —a,(r) (3.4)



Now for a conservative force field, force can be written as a gradient of the
potential energy. Thus, acceleration can be defined by force per unit mass

% = —V&. Here ® is the gravitational potential. Thus, from equation(3.4)
we get
2
- voe
r
0P
2 — J—
vio= oy
From Poisson’s equation we have,
V20 = 4rGp (3.5)

Considering spherically symmetric case, we have

v. (M) N %d% (r*(r)

r

v. (“2(r)f) = S (1) = 4Gy

r r

Thus density distribution:

p= er?% (rv*(r)) (3.6)

3.5 Density distribution using modified grav-
ity
3.5.1 Theory

As we already discussed in chapter : 1, in the modified theory of gravity,
Poisson’s equation can be written as

V2P = 4nGlp + Zv% (3.7)

Here k is coupling constant. Using v? = r%—f from equation (3.7) we get

2 A
v. <@) = 4nGp + gv% (3.8)
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Since we considered a spherically symmetric mass distribution, we can use

v. (”2(7%) — %% (ro?(r))

r

v — L4 (22)

Thus we get

d*p dp 167G 4.d
T2W + 27’% + p pr? = = (rv*(r)) (3.9)

Now if the expression of rotational velocity of galaxy is known, then density
distribution of a galaxy can be found by solving above equation.

3.5.2 Scaling of the variables of the differential equa-
tion

The nature of the solution of the differential equation(3.9) can be controlled
by two ways. One is by changing the rotational velocity and another is by
changing the sign-magnitude of the parameter ‘x’. But since the observation
is based on the rotational velocity we have no control on it. So, we can
control only the parameter ‘x’. Before proceeding further, let us first scale
the variables in such a way that, differential equation becomes dimensionless.
Let,

r—r = 1,
Voi(r)
p(r) — p(r) = pop(r)

[~
—~
=
<
—~
=
~—
I

(3.10)

Here r, ,V, and p, are in dimension of length, velocity and density respectively
and 7 , ¥ , p are the corresponding dimensionless quantities. Using this
transformation, from equation(3.9) we get

25 dp 167G 4 ,d
9 L ap 02 _ 22 o
Po (T I ) Vo g (F0°(0)
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Instead of ‘x’, we define a new variable o as

1 2
_ 6w G (3.11)
K
This gives
2 dPp | dp a od o,
op 2P _ a g,
po ( ae T gt ) TGz "o g 0

By choosing p, = 47rG2r2 we get,

L d2p dp d

d_rs + 2rd—p + api? = a— (F0*(7))

Now we can drop out the primes because it does not give any new feature of
the solution. Thus, we get a dimensionless differential equation
N d d
r j; + 2rd—p + apr® = a— (rv*(r)) (3.12)

The solution of this equation depends only on the initial conditions and
the parameter «, and nature of solution is independent of the size, central
density of the galaxy. Thus solving this, one could know about the density
distribution, size and mass of a galaxy.

3.5.3 Solution

To solve the differential equation we assume that
p(r)y =r"P(r) (3.13)
Putting this, from above differential equation we get,

n+2d2P( ) dP(r)
dr

o 47" (24-2n)

+r"P(r) [n(n — 1) + 2n + r’a] = adir (rv*(r))
. (3.14)

To simply our calculation we set the coefficient of % equal to zero. This
gives the value of n = —1.

1d2P(T) -1 2 _ 2
r 2 + 77 P(r) (r a) = a% (7’11 (r))
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LD v aplr) = ard (reir)

dr? rdr
dzi g” +aP(r) = aQ(r) (3.15)
where
Qr) = %d% (rv*(r)) (3.16)

Thus we have to solve the above differential equation to find P(r). After

finding the solution of P(r), the dimensionless density can be obtained by

using p(r) = @.

CASE1: a>0ie. k>0. Let a = 12
We have

d*P
drgr) + V2P(r) = v*Q(r) (3.17)
Let Py be the complementary solution of this differential equation i.e.
d*Py(r) 2
02 +v°Py(r) = 0
Solving we get,
Py = Cysin(vr) 4+ Cy cos(vr) = Cy Pyy + Co Py (3.18)

In order to find a complete solution, we have used variational method. Let
the general solution can be written in the form :

P(r) = uy Py + ua Prr
Differentiating with respect to r we get
P'(r) = w1 Pyy + i Py + ua Py + uy Prro

Assuming

Therefore,

P,(T) = ulpllil + U2P1/L12
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Differentiating with respect to r we get
P"(r) = w1 Py + us Py + u) Py + up Py
Putting this in equation 3.17, we get

(w1 Pjyy + ug Py + 1y Phyy + ubPypo) + 12 (uy Py + uPra) = 2Q(7)
Uy (P}}l + V2PH1) + Uy (P}}Q + UQPHQ) + (U} Py +ubPlyy) = v2Q(r)

This gives
(W) Ppyy + usPpps) = v2Q(r) (3.20)
Solving equations (3.19) & (3.20) we get
P,
UII(T‘) — 2 H2(;[1Q(r)
P
Ué(?‘) _ +V2 Hl(;ZQ(T)
Here W is
W — Py Pgo | | sin(vr) cos(vr) | _
| Py, Py | | veos(vr) —wsin(vr) | v
Thus

ur(r) = +V/PH2(7’)Q(r)dr+Cl

us(r) = —V/PHl(T>Q(T‘)dT+OQ

P(r) = u1Pg + uaPpo
P(r) = (—H//PHQ(T)Q(T)dT’ + Cl> Py + <—I//PH1(7“)Q(7”)d7’ + 02> P

P(r) = Cysin(vr) + Cy cos(vr)

+v (sin(w)/cos(w){%d% (rv*(r)) Ydr — cos(vr) cos(vr) /sin(w){%d% (rvz(r))}dr)
(3.21)
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CASE 2: a<0i.e. k<0. Let a=—9?

We have 2p
dri” —7*P(r) = —*Q(r) (3.22)

Let Py be the complementary solution of this differential equation.
d2P H(T’)
dr?

—72Pg(r) = 0

PH = C’le'” -+ CQG_VT = 01PH1 + CQPH2 (323)

In order to find complete solution we use the same procedure and finally
obtain,

Prra(r)Q(r)
/ o 24 H2
uy(r) = +y —w
P,
u/2(7,) _ _72 Hl(;QO(T)
Here W is
W — Pyi Ppy | | €7 e "
| Py Py || e e
W = —2v
Thus
() = =7 [ Pu)Q)dr+

wir) = +1 / Py (NQ(r)dr + Co

P(r) = w Py + usPpy
P(r) = (—% /PHQ(T)Q(T)UZT + Cl) Py + (+% /PHl(T)Q(T)dT + Cz) Prro
P(r) = Cye" 4 Coe™ "

+ (e—w / ew{%d%(mQ(r))}dr—ew / e—vr{%%(m%))}dr) (3.24)

BO |2
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Finally we get,

1. CASE1: k> 0ie k= 16707

V2

p(r) = L[Cysin(vr) + Cy cos(vr)

+v (sin(w) |/ cos(w){%d% (rv?(r)) }dr — cos(vr) fsin(ur){%% (TU2(7“))}CZT)]

2. CASE2: k <0 ie. k=—1025"
p(f/‘) = %[Cle’w + 026_77-

+2 (e [ {LL (ro?(r)}dr — e [ e {IL (rv?(r))}dr)]

rdr rdr

3. CASE 3 : k =0 ( Newtonian solution)

(3.25)

3.6 Results

Now to obtain a complete solution of density distribution, we have to
consider an expression for the rotational velocity. But, unfortunately there
is no standard relation between rotational velocity and distance from the
center of a galaxy which is available to us and which can be fit with all types
of galaxy rotational curves. Further we know that a curve could be fitted
in varieties of ways. To find density distribution, we have used a simplified
model to fit the observed data. We assumed that rotational velocity can be
fitted by the following equation.

v(r) =Y ar” (3.26)

n=1

Where m is integer number, called the order of fitting.
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3.6.1 Initial condition:

To find solution of the differential equation, we used p(r) = Pff). But

such type of transformation shows a singularity unless we use following initial
conditions :

P(r) = 0,r—20
dpP(r
dr

~—

= 1,r—0

This choice allows us to scale the density distribution in terms of central
density, because the above boundary condition basically gives,

lim p(r) = 1

r—0
Considering this initial condition, we also found that polynomial of order
m > 4 fitted very well with the observed data. Therefore, we fixed the
minimum value of m = 5. In later sections, we have elaborated our discussion
for m =5, m =6 and m = 7. To find the particular integral part and the

constants C'l & C2, one can use initial conditions. Here, to find this we used
‘Mathematica’ software (see Appendix B).

3.6.2 Guess velocity curve and fitting coefficients

To obtain the density distribution it is required to start with a given velocity
function. Without loss of any generality, we used data for the rotational
velocity (see figure 3.4). Then we used ‘Mathematica’ software to find the
coefficients a;’s. Value of the coefficients depend on the order ‘m’ and they
are given below.

SET:I m=5
a1 = +0.5103427866655019, as = 0.08494519330627633, as = +0.006116936269042256 ,
aq = —0.00019737550711519553 , a5 = +0.000002343484592807845

SET:II m =6

a1 = +0.6251047988387206, az = —0.1394846016442028 , a3 = +0.014507964117148962,
aq = —0.0007609406441321287 , a5 = +0.000019529309009183644 ,
ag = —1.949233064861065 X 10~7
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Figure 3.4: Plot of rotational velocity as a function of distance from the center. Blue —
dotted , black — dashed & Red lines corresponding to the m = 5;m = 6 & m = 7 order
fitting respectively.

SET:IIT m =7

a1 = +0.7396738482934138, a2 = —0.2123620099164611, a3 = +0.030067227602466995,
aq = —0.0022965990004775983, as = +0.00009640684792484779 ,
ag = —0.000002091496923398132 , a7 = +1.830996046408461x10~°

Using these cofficients, the nature of the density distribution is given be-
low. Further, we have defined a cut off radius where p(r) becomes negative
i.e. once p(r) negative, no further solution exists beyond that distance. Cut
off radius depends on the value of «.
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3.6.3 Casel: x>0

Recalling the solution ‘1’ and using the coefficients a;’s we get following plots
for respective values of m.

SETI:m=5

SET : Iim=3) Plot of Vir) Vs 1
LI R A R A |

SET I (m=3) Plot of Density p(r)Vs r forv=10 SET I (m=3)Plot of MASS(r) Vs r forv=10
W0 T T T T T T A0 T T T T T T

density  pfr)
=)
=

0.001

104

=

30

Figure 3.5: Top figure shows the fitted velocity curve. Lower[Left] figure shows the
density distribution, which was obtained by plotting the analytical solution (Black line)
and by solving differential equation 3.17 numerically (Green line). This figure confirms that
our analytical solution is correct. [Right] Figure shows corresponding mass distribution.
The dashed red — dotted vertical line denotes cut off radius of our solution.
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SET II(m=6) and SET III(m=7)

SET : I (m=6) Plot of WV(r) Vs r

SET : Il im=7) Plot of V(r) Vs r
T T T T

Vir)

0 5 10 15 0 25
T T

SET Il (m=>6) Plot of Density pir)Vs r for v=13 SET Il (m=T) Plot of Density p(r) Vs r for v=20
10T T T T T T T

01
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SET 11 (m=6)Plot of MIASS(r) Vs r forv=13
500 v T T T T T T 400 T T T T T T
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MASS[)
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Figure 3.6: [Left] panel for m = 6 and [right] panel for m = 7. Top figures shows the
fitted velocity curve. Middle figures shows the density distribution, which was obtained by
plotting analytical solution (Black line) and by solving differential equation 3.17 numer-
ically (Green line). This figure confirms that our analytical solution is correct. Bottom
figure shows corresponding mass distribution. The dashed red—dotted vertical line denotes
cut-off radius of our solution.
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Dependence of density distribution on ‘v’(i.e. on ‘x’)

While finding the density distribution we noted that the pattern of the
distribution and cut-off radius varied with the value of ‘v’. Following figures

shows the density distributions for different ‘2’
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Figure 3.7: [Left panel]Plot of density distribution as a function of distance from the
center of the galaxy . [Right panel|Plot of mass distribution as a function of distance from
the center for corresponding density distribi‘glion.



3.6.4 Casell :k <0

While finding the solution for £ < 0 (i.e. a = —v?), we noted that the
density distribution is not only very much sensitive to a slight change in ~
(Ay ~ 1071%) but also, a valid solution exists within a very small range of
v. Further, we have seen that, the cut-off radius is much smaller than the
given range of the velocity distribution. For example, if the given velocity
distribution is upto r = 30, but cut-off shows at r = 9, it decreases with
increase of . Therefore, we conclude that, for k < 0 no solution exists.
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Figure 3.8: [Left panel]Plot of density distribution as a function of distance from the
center .[Right panel]Plot of mass distribution as a function of distance from the center
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equation 3.22 numerically.
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3.6.5 Caselll: k=0

Now we discuss a very interesting fact that arose during calculation. When
we began a comparison between the solutions for x # 0(i.e. Modified
solution) and x = 0(i.e. Newtonian solution), we saw that x > 0 solution
approaches the Newtonian solution. The figure below shows that our
proposal for valid solution for x > 0 is a good approximation.
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line shows Newtonian solution and black line shows solution for £ > 0.



3.7 Rescaling of the variables

Finally, to obtain the numerical value of the central density and total mass of
a galaxy, it is required to rescale the variables which we have scaled earlier.
From section 3.5.2 we have

‘/'02

p(r) — p(r) = 4WGr2p(T)

Now V(r) is measured in the unit K'm/sec and is the order of 100. Thus,

Vi (100 x 10%)?m?.sec™2
pe 41 X 6.673 x 10~ "Ukg=t.m3.sec—2

= 1.19 x 10¥kg.m™"
3.0857 x 10% _—
1.9891 x 1030 sun""Pe
= 0.185 x 10° My kpc™?

= 1.19 x 10" x

The radial distance ‘r,’ (i.e. distance from the center of the galaxy) is usually
measured in kiloparsec . Thus , r, = 1kpc gives

V2 1

y = —2 X —
P IrG " rd
= 0.185 x 10° My, .kpc™>

Thus, the value of central density is

po = v0% x 0.185 x 10° My,,.kpc™ (3.27)
where v0 is the maximum value of the velocity in the unit of km/sec to order
of 100(i.e.if maximum velocity is 200km/s then v0 = 2).
3.8 Value of coupling constant

In this section, we have tried to fit our model of density distribution
with the observed rotational velocity data of a galaxy. The table given below,
summarises our result.
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SL.  Name  of Vi Fmar = 229 Cut off MASS
NO. Galaxy (Gkpe?) | radius (10" M)
(kpc)
1 MILKY WAY 21 0.1139 18.5 1.106
2 ES00840411 25 0.0804 11.2 0.161
3 ES02060140 20 0.1257 11.5 0.317
4 ES03020120 28 0.0641 11.0 0.224
) ES04250180 16 0.1963 14.8 0.552
6 F563-1 18 0.1551 15.5 0.430
7 F568-3 24 0.0873 11.5 0.262
8 F571-8 15 0.2234 13.0 0.634
9 F579-V1 30 0.0558 14.0 0.408
10 F730-V1 22 0.1038 12.0 0.468

Table 3.1: Possible value £qs , mass of various galaxies. To see the source of rotational
velocity data look at the reference [1]

Our results show that, there is a minimum value of v for which density dis-
tribution, obtained from modified Poisson’s equation, approaches the New-
tonian solution. Thus, by fitting the density distribution, one could pa-
rameterize the value of v,,;,, and hence maximum value of k. Further, we
already excluded the possibility of k < 0. Therefore possible range of cou-
pling constant x (considering only the above table) is 0 < k < 0.2234 G.kpc?.
However, to set the range of ‘x’ it is necessary to analyse the data of large
number of galaxies.
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3.9 Conclusions

Finally we wish to end our discussion by highlighting some important results.

1.

Using modified theory of gravity, it is possible to find analytical solu-
tions of the differential equation which describes the density distribu-
tion of a galaxy.

. Solution of density distribution depends on sign and magnitude of cou-

pling constant ‘x’:

e For k < 0 (i.e. @ =—9?) no fixed solution is possible.

e For k> 0 (i.e. @ = 1?) there is a possible solution if the value of
k is below a critical value.

It is expected that a galaxy with a particular rotation curve will have
a particular value of mass and radius. In our results, we have seen that
the scaling velocity v, is different for different galaxies, hence central
density and mass distribution are different.

. Cut off radius and total mass depends on the coupling parameter k.

Magnitude of x depends on galaxy rotation curve. The possible range
of coupling constant is 0 < x < 0.2234 G .kpc?.

Since density distribution quite similar to the Newtonian solution, or-
der of magnitude of total mass is same. Therefore modified theory of
gravity fails to solve dark matter problem.
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Chapter 4

Summary and future work

In this chapter, we present a summary of the main results and some directions
for future work.

4.1 Summary

We have seen that, within non-relativistic limit, the modified Poisson’s equa-
tion introduces a new interesting phenomenology over the old Newtonian
theory of gravity. The coupling term & is the parameter of this theory and
gives different conclusions under the choice of its sign and magnitude.

1. In the first part of this report, we have seen that, for a negative value
of the coupling constant (i.e. k < 0), pressure less matter (dust) col-
lapses under influence of gravitational force as in the case of Newtonian
theory. For positive value of coupling constant (x > 0), dust produces
a nonsingular state in which matter density periodically changes with
time.

2. In the second part of this report, we tried to find out the solution of den-
sity distribution of a galaxy from the observe galaxy rotation curve. In
this case, we have seen that favourable solution exists only for x > 0,
but there is an upper limit below which the solution approaches the
Newtonian solution. Comparing the predictions from modified galaxy
model with observations, we constrain possible range of coupling pa-
rameter for galaxies, which is 0 < k < 0.2234 G kpc?.
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4.2

Future work

Pressure less matter (dust) is a very theoretical concept. So one could
try to solve a problem considering matter influenced by both gravita-
tional force and pressure force. In this case, following equation may be

useful

du(r,t)  1dP  Gm(r) k9p

dt p dr r2 4 Or

Here we may use polytropic relation between the pressure(P ) and
density(p) i.e. P = k,p™ , n is the polytropic index and k, is a constant.

(4.1)

Hydrostatic equilibrium equation is now different from the Newtonian
theory. So, one could try to find out the solution from the equation
given below.

dP Gm(r)p Kk Op

— = — —p—= 4.2
dr r2 4" oy (42)
Lowest energy state is favourable to all objects. Since, modified Pois-
son’s equation introduces a coupling parameter ‘x’, the gravitational
energy is also depends on the value of x . Therefore condition for

minimum energy may be different from Newtonian gravity.

Instead of considering a spherically symmetric model of a galaxy, one
may use a more realistic model to find density distribution of a galaxy.
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Appendix A

Programming codes in C

//STUDY OF COLLAPSE OF DUST PARTICLES IN MODIFIED GRAVITY//////////////////////
#include<stdio.h>
#include <math.h>
#include<conio.h>
double F (double x, double y,double z,double kn)
{ double f; f=z; return (f) ; }
double G (double x, double y,double z,double kn)
{ double g; g=0.33334*z*%z+4%*(22/7) *exp (y)+1.5*kn*exp(1.666667*%y); return(g);}
main ()
{ int i,j,a,b,sl,s2,m,n,p,q,u,yy,c,cc,end,11,dim=10000;
double y0,x0,2z0,y1l,z1,h,t,kn; double k1,k2,k3,%k4,11,12,13,14;
double p0[20000],p2[20000],ul[20000],pr[dim],ur[dim];
float x[dim],y[dim],y2[dim],z[100],w[100],t1[1000],t2[1000], r[dim];
float rr,T,T1,T2,Tnc=0.556, top,botom, top2,botom2, test, amp, amp2, tt, ts, ss;
float Tc[dim], TIMP[dim],AMP1 [dim],AMP2 [dim];
printf ("put the initial value of kn ('kn =-16' for -ve or "kn=1 for +ve : ");
scanf ("%e", & ss); printf ("\n\t--—--—--—-—-—-—- S TART ——————-——————- \n") ;
FILE* fp;
rr=0.2;11=80;
for (ce=0;ce<ll;cc++)
{ kn=ss+cc*rr; x0=0;y0=0;2z0=0; h=0.001;n=10;p=10000;
i=0; while (x0<n)
{
k1 = h*F(x0,y0,2z0,kn); 11 = h*G(x0,y0,z0,kn) ;
k2 = h*F(x0+h*.5,y0+k1*.5,2z0+11*.5,kn); 12 = h*G(x0+h*.5,y0+k1*.5,2z0+11*.5,kn) ;
k3 = h*F(x0+h*.5,y0+k2*.5,2z0+12*.5,kn); 13 = h*G(x0+h*.5,y0+k2*.5,2z0+12*.5,kn) ;
k4 = h*F(x0+h*.5,y0+k2*.5,2z0+13*.5,kn); 14 = h*G(x0+h*.5,y0+k2*.5,2z0+13*.5,kn) ;
vyl = y0O + ( k1 + 2*k2 + 2*k3 + k4)/6;
zl = z0 + (11 + 2*12 + 2*13 + 14 )/6;

pO[il=exp(yl); p2[i]l=-5*pow (p0[i],1.66667) ; ul[i]=-0.33334*z1;
if (pO[i]>pow(10,10)) {Tc[ccl=i*h; printf ("\n%0.2£\t%£f",kn, Tc[cc]/Tnc); break;}
yO=yl; z0=zl; x0=x0+h;i=i+1; end=1i;

}
fp=fopen ("ppO0.txt","w") ;

for (1=0;i<p;i++) { t=i*(h/Tnc);fprintf (fp, "\n%e\t%e",t,p0[i]);}
fp=fopen ("pp2.txt","w") ;
for (i=0;i<p;i++) { t=i* (h/Tnc); fprintf (fp, "\n%e\t%e",t,p2[1i]);}
fp=fopen ("pul.txt","w");
for (1=0;i<p;i++) { t=i*(h/Tnc);fprintf (fp, "\n%e\t2e", t,ul[i]);}
fp=fopen ("pp0p2.txt", "w") ;
for (i=0;i<p;i++) { t=i* (h/Tnc) ; fprintf (fp, "\n%e\tse\t%e",t,p0[i],p2[1]);}

fp=fopen ("all.txt","w"); fprintf (fp,"\n Time (t/Tnc)\t\tpO\t\t\p2\t\tul\n");
for (i=0;i<p;i++)
i* (h/Tnc) ; if (£<10) {fprintf (fp, "\n%e\t%e\t%e\t%e",t,p0[i],p2[i],ul[i]);}else break;}
[/ mmm e — S TART CALCULATTION -—————————————————— - —————————————
if ( pO[end]l< pow(10,10) )
{ //STEP 1: read data ////////////////////7////7////7777/777777777777777770777770777070777777777
fp=fopen ("ppOp2.txt","r"); m=0;test=1.0;
while (test > 0) {test=fscanf (fp, "$£%£%f", a&x[m],&y[m],&y2[m]) ;m++;}m=m-1;//No.of data points
//STEP 2: peak detection////////////////////////////////////////////////////////
0; top=0;botom=0; top2=0;botom2=0;
O;i<m=1;i++)
{ if( (y[i-11< y[i] && y[i]>y[i+1] )11 ( y[i-2]< y[i] && yl[i]l>y[i+2])
{z[al=x[1]; top=top+y[i]; top2=top2+y2[i];a++;}//to detect top
if (0 (yli-1]>y[i] && y[i]<y[i+1] )1 ( y[i-2]> y[i] && yl[i]l<y[i+2]) )
{w[bl=x[1]; Dbotom=botom+y[i]; botom2=botom2+y2[i]; b++;}//to detect botom
} g=a-1;u=b-1;
//STEP 3: Time periode calculation///////////////////////1////777/777777/7777777777077777077777
51=0;s2=0;T=0;T1=0;T2=0; TIMP[cc]=0;AMP1 [cc]=0;AMP2[cc]=0;
for(j=0;j< g ;j++) //Time periode calculation considering top side
{ €1031==2[3+11-2[3]); i£(€1(31> 1 ){TI=TI+tl[J];sl++;}}
for(j=0;j< u ;j++)//Time periode calculation considering bottom side
{ t203)=wlj+1]-wljl; if(t2[31> 1 ) (T2=T2+t2([j];s2++;}}
T=(T1/s1+T2/s2)*0.5; TIMP[cc]=T;// AVERAGETIME PERIODE
//STEP 4: amplitude calculation///////////////////////////777/7777777777777/77777777707777777777
amp= (top/a-botom/b) *0.5; AMP1 [cc]=amp; //AMPLITUDE pO
amp2= (top2/a-botom2/b) *0.5; AMP2 [cc]=amp2; //AMPLITUDE p2
printf ("\n%0.2E\tSE\tSENLSE\L", kn, TIMP [cc],AMP1 [cc],AMP2 [cc]) ;}

}
//STEP 8: TO PLOT VARIATIONS WITH KN////////////////////////////////7/7)))7)7)7)77777777777777
FILE* ffp;
ffp=fopen ("difkn.txt","w");// for negative kn this loop runs automatically
fprintf (£fp, "\nkn\t\tTIMP\t\tamp of P1 \tamp of P2\t\n",-kn,TIMP[cc],AMPl [cc],AMP2[cc]) ;
for (cc=0;cc<ll;cc++) {kn=ss+cc*rr; fprintf (ffp, "\n%f\tsf\tsf\tsf\t", —~kn, TIMP [cc],AMP1 [cc],AMP2 [cc]) ; }
ffp=fopen ("tc.txt","w") ; // for positive kn this loop runs automatically
for (cc=0;cc<ll;cc++) {kn=ss+cc*rr; fprintf (££fp, "\n%£\t%f\t", kn, Tc[cc]/Tnc) ; }
CALCULATTION
fffffffffffff \n");getch();

}
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Appendix B
Mathematica Codes

K = 0 Sclution :

p=clSin[vr] +c2Cos[vr] +vx|( Sin[vr

{ ] Integrate[Cos[v r] (Q (xr)) , r]
—Cos[v r] Integrate[Sin[vzx] (@ {x}) , xr] )
Qo= i D:e:r (v)z}, r:
V-alr+azri+azri+adr®+asr®+ac r®+ a7 2’
plr] =plr]/x

Input codes for finding density distribution are given below.

Inj2}= vrot = Manipulate[?lot[{ra; s 1 as + r ay + r! ay + r ag + rt ag + r’ a-;}, {r, 0, 26}, PlotRange - {0, 1.5},
Frame + {True},

FramelLabel + {" r ", "V( r) "}, PlotLabel +"Plot of V(r) Vs r ",

PlotStyle -» { {Blue, Thi ck}]] '

{ay, 0.7396738482933563" , 1}, {ay, -0.2123620099164508" , - .5}, {a;, 0.03006722760246725", 0,05},

{ay, -0,0022965990004777895", 0.0005}, {as, 0.00009640684792486435" , 2.01756E - 4},

{ag, -2.0914969233986876 **-6, -3 «10* -6}, {a;, 1.8309960464091182 **-8 , +3.2095241336625446‘**-8}]

0,(r{raurRaZ»r’a,“r‘a“r5a5‘r5a5+r’a-;)z}

: ool

Inf4}= P=cl8in[vr] +c2Cos[vr] + Collect[?ullSimplif.y[v X (

= @ = Collect [{

sin[vr] Integrate[Cos[v r] ( 3ral+8riaja+r’ (Sag +10a a3) + r (12a,23+123; 24) +
r® (7a§¢145;a.»14a1a5)
+1® (162324 + 162225 +16aya¢) + 281 agar + 152l + ¢’ (Saiolﬂa;asolﬂaza‘oiealm)
or'(20a4a5¢20a;a“20a2a1)¢t’(11a§¢22a4au~2253a1)+r1°(24asa6o24a4a7)¢
™ (13a5+26asa) ), 1] -

Cos([v r]

Integrate[Sin[vr] ( 3raj+8riajay+r (53§ +102; a3) + r! (12aa3+123; a4) +
r® (7a§014a;a4¢14a1a5)or‘ (16ayay+16a2as + 16a; ag) + 28 r'2aga; + 1512 a2 +
' (9af+18a3as+18as a6+ 182 a7) + 1° (202425 + 202326+ 202z 27) + 1° (1123 + 222426+ 2223 29) +
r’°(24a5qo24a4a1)oru(13a§o2ﬁasa1) )ox] )]1]

Inj5= DP = D[%4, r] ° Ing= NP = Collect[Limit[{%4}, r+ 0], v] ’ Inj7;= NDP = Collect[Limit[{%5}, r= 0], v]

7
Infgl= Ci =
Collect[
Solve[
{c2 16 a; az 288 az a3 + 288 a; a, -11520 a3 ag - 11520 a3 ag - 11520 a; ag 13412 044 80D ag ay
- + + + +
Vz Y‘ Ys \-’u
806400 a4 a5 - BO6400 a; 3 + B06400a; a7 -87091200 a5 ag - 87091200asa, _
- =
W8 T ‘
2 -30al-60a;a; B40al+1680aya,+1680aas 93405312000a3
clv+3a; + + +
A A A2
-45360aj - 90720 a; as - 90720 a; ag - 90720a; a; 3991 680 al + 7983360 ag ag + 7983 360 a; a,
V‘ * V! *
-518918 400 ai - 1037 836800 as a
‘vm 3 ’=1}, {e1, c?}],v]
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